SISTEM KONVERSI UCAPAN KATA KE TEKS MENGGUNAKAN SUPPORT VECTOR MACHINE SPEECH WORD RECOGNITION TO TEXT CONVERTER USING SUPPORT VECTOR MACHINE

Main Article Content

Elsen Ronando
Sugiono

Abstract

Artificial intelligence technology is developing very rapidly. Various fields have applied this technology to help human work. Speech recognition system is one of the artificial intelligence technologies that are widely applied in various fields. However, some research showed that it was still necessary to develop a method for a good speech recognition system. In addition, the development of speech recognition systems that can provide benefits needs to be developed, such as text recording. Based on this, the research focuses on developing a speech recognition system, in the form of spoken words and convert to text form. Speech words that have been recorded are then extracted features using linear predictive coding method. After that, the characteristic features of each sound are trained and tested using the Support Vector Machine (SVM) method for the process of recognition and convert it into text. Based on the evaluation results show that this system is able to recognize words with an accuracy rate of 71.875%. These percentages indicate that the system is able to recognize spoken words and transform them into text form properly.

Downloads

Download data is not yet available.

Article Details

How to Cite
Elsen Ronando, & Sugiono. (2019). SISTEM KONVERSI UCAPAN KATA KE TEKS MENGGUNAKAN SUPPORT VECTOR MACHINE : SPEECH WORD RECOGNITION TO TEXT CONVERTER USING SUPPORT VECTOR MACHINE . Jurnal Teknologi Dan Terapan Bisnis, 2(2), 1-8. https://doi.org/10.0301/jttb.v2i2.45
Section
Articles

References

BADAN PUSAT STATISTIK. 2015. Kabupaten Banyumas Dalam Angka Tahun. Banyumas. Diperoleh dari: https://banyumaskab.bps.go.id/.

TALLULEMBANG, TATIK MELINDA; MANGGAU, FRANSISKUS XAVERIUS. 2013. Perancangan Sistem Pakar Diagnosis Penyakit Sapi Pada Dinas Peternakan Kabupaten Merauke. MUSTEK Vol 2, No 2, page. 125-134.

WAHYUDI, R., UTAMI, E., & ARIEF, M. R. (2016). Sistem Pakar E-Tourism Pada Dinas Pariwisata D.I.Y Menggunakan Metode Forward Chaining, 17(2), 67–75.

LUTFI, A. A., & WAHYUDI, R. (2017). Aplikasi Tracer Study Berbasis Website Responsive Pada Fakultas Pertanian Universitas Jendral Soedirman. Majalah Ilmiah INTI (Informasi Dan Teknologi Ilmiah), 13, 125-132.

GIARRATANO, J., AND RILEY, G., 2005, Expert System: Principles And Programming, edisi 3, PWS Publishing Company, USA.

KENNETH E. KENDALL, JULIE E. KENDALL. 2010. Analisis dan Perancangan Sistem, Jakarta, PT Indeks.

HANIF AL FATTA. 2007. Analisis dan Perancangan Sistem Informasi. Andi. Yogyakarta.

WAHYUDI, R., & PRASETYO, W. D. (2018). Implementing Forward , Backward Chaining And Certainty Factor in Responsive Web-Based Expert System of Cow Disease, 2(1), 7–19.

MAHARANI, I. (2017). PENENTUAN JENIS MALARIA DENGAN MENGGUNAKAN METODE FORWARD CHAINING DAN NAIVE BAYES BERBASIS MOBILE. Universitas Lampung. Diperoleh 14 Desember 2018, dari http://www.academia.edu/download/57724277/SKRIPSI_FULL_IRFANI_MAHARANI_ILMU_KOMPUTER_UNILA.pdf

Effendi, H., & Oktarina, R. (2016). SISTEM PAKAR KERUSAKAN MESIN BORDIR DENGAN METODE CERTAINTY FACTOR BERBASIS ANDROID. 28-29 Oktober 2016 (pp. 223-229)