SISTEM KONVERSI UCAPAN KATA KE TEKS MENGGUNAKAN SUPPORT VECTOR MACHINE SPEECH WORD RECOGNITION TO TEXT CONVERTER USING SUPPORT VECTOR MACHINE Section Articles

##plugins.themes.academic_pro.article.main##

Elsen Ronando
Sugiono

Abstract

Artificial intelligence technology is developing very rapidly. Various fields have applied this technology to help human work. Speech recognition system is one of the artificial intelligence technologies that are widely applied in various fields. However, some research showed that it was still necessary to develop a method for a good speech recognition system. In addition, the development of speech recognition systems that can provide benefits needs to be developed, such as text recording. Based on this, the research focuses on developing a speech recognition system, in the form of spoken words and convert to text form. Speech words that have been recorded are then extracted features using linear predictive coding method. After that, the characteristic features of each sound are trained and tested using the Support Vector Machine (SVM) method for the process of recognition and convert it into text. Based on the evaluation results show that this system is able to recognize words with an accuracy rate of 71.875%. These percentages indicate that the system is able to recognize spoken words and transform them into text form properly.

##plugins.themes.academic_pro.article.details##

How to Cite
Elsen Ronando, & Sugiono. (2019). SISTEM KONVERSI UCAPAN KATA KE TEKS MENGGUNAKAN SUPPORT VECTOR MACHINE . Jurnal Teknologi Dan Terapan Bisnis, 2(2), 1-8. Retrieved from http://jurnal.aksi.ac.id/index.php/jttb/article/view/45

References

[1]. Arya Adhinugraha, Agustinus dan Suyanto, 2012. Sistem Pengenalan Sinyal Ucapan Bahasa Indonesia yang Kontinyu dan Kosakata Besar Menggunakan HTK dan Julius. Laporan Tugas Akhir. Jurusan Teknik Informatika, Fakultas Teknik Informatika, Universitas Telkom.
[2]. Husaenul Hakim, Fandy, Suyanto, dan Iwut Tirtoasmoro, Iwan, 2011. Pengenalan Sinyal Suara Pada Speech To Text Menggunakan Linear Predictive Coding (LPC) dan Hidden Markov Model (HMM). Laporan Tugas Akhir. Jurusan Teknik Informatika, Fakultas Teknik Informatika, Universitas Telkom.
[3]. Ikra Dewantara, dkk, 2013. Pengenalan suara berdasarkan usia dan jenis kelamin menggunakan algoritme Support Vector Machine (SVM). Laporan Tugas Akhir Institut Pertanian, Bogor (IPB).
[4]. Rabiner, L., dan Juang, B.H. 1993. Fundamental Of Speech Recognition. New Jersey : Prantice-Hall Inc.
[5]. Ronando, Elsen, Irawan, M. Isa, dan Apriliani, Erna. 2015. A Hybrid Approach Support Vector Machine (SVM) – Neuro Fuzzy For Fast Data. The 1st International Seminar On Science and Technology : vol 1, pp 2.
[6]. Ronando, Elsen dan Irawan, M. Isa. 2012. Pengenalan Ucapan Kata Sebagai Pengendali Gerakan Robot Lengan Secara Real-Time dengan Metode Linear Predictive Coding–Neuro Fuzzy. Jurnal Sains dan Seni vol 1 no 1, pp 51-56.